
247

0022-4715/02/0700-0247/0 © 2002 Plenum Publishing Corporation

Journal of Statistical Physics, Vol. 108, Nos. 1/2, July 2002 (© 2002)

Cut-and-Permute Algorithm for Self-Avoiding Walks
in the Presence of Surfaces

Maria Serena Causo1

1 INFM-NEST and Scuola Normale Superiore, 56100 Pisa, Italy; e-mail: causo@cibs.sns.it

Received March 20, 2001; accepted February 20, 2002

We present a dynamic nonlocal hybrid Monte Carlo algorithm consisting of
pivot and ‘‘cut-and-permute’’ moves. The algorithm is suitable for the study of
polymers in semiconfined geometries at the ordinary transition, where the pivot
algorithm exhibits quasi-ergodic problems. The dynamic properties of the
proposed algorithm are studied in d=3. The hybrid dynamics is ergodic and
exhibits the same optimal critical behavior as the pivot algorithm in the bulk.

KEY WORDS: Monte Carlo algorithm; polymers; semiconfined geometries.

1. INTRODUCTION

In this paper we introduce and discuss the properties of a hybrid Monte
Carlo algorithm which can be used to study the equilibrium properties of a
polymer molecule grafted to a surface.
The system can be experimentally obtained either by chemically grafting

one polymer end in an irreversible way, or, as for surfactants, via physical
adsorption of an endgroup or one of the two blocks in a diblock copolymer.
In this last case, the process is reversible, since the attached end can desorb
both when the temperature increases and when the solvent quality changes.
Systems of this kind include polymers grafted at colloidal particles or

surfaces in solution which can help stabilizing against flocculation (1) or
polymers grafted at flexible lipid membranes exerting on the membrane a
bending force which is proportional to the monomer concentration at the
membrane. (2–5)

In what follows we will consider a polymer in a good solvent which is
grafted at a surface S and interacts repulsively with S. We will focus in
particular on the case in which S is a flat surface. The polymer will be

modelled by an N-step lattice self-avoiding walk (SAW), which provides a
good description of the critical behavior of polymer molecules in the bulk
as well as in confined geometries. (6, 7)

Efficient simulations of SAWs can be obtained by using nonlocal
algorithms. For instance, the pivot algorithm (see refs. 8–11 and references
therein) is optimal, up to a constant factor, for sampling global observables
in the fixed-N free-endpoint ensemble in the bulk since the autocorrelation
time in CPU units is simply proportional to N. In the presence of surfaces,
this algorithm is not as efficient and in some cases it is not even ergodic
(this is the case of a two-dimensional strip, see ref. 12). In the presence of a
single impenetrable plane, the algorithm is ergodic, but still one expects it
to be inefficient since the initial part of the walk will be rarely updated. For
instance, we will show that, in order to update the direction of one of the
first links pointing along the normal vector to the surface, the walk should
have an extremely unlikely geometrical shape. This means that, in order to
explore the relevant phase space, the algorithm has to go through highly
improbable configurations. Therefore, even if ergodic, the algorithm has an
autocorrelation time that grows rapidly with N.
To overcome these problems, we propose here a hybrid algorithm

based on the pivot move and on a cut-and-permute move. This last move
has been introduced in ref. 13 in a hybrid algorithm working in the fixed-
endpoint, variable-N ensemble. It consists in cutting the walk into two
parts and in rebuilding it by concatenating the two parts in the opposite
order. As we will discuss, such a move is quite efficient in changing the
configuration of the walk near the grafted endpoint. Thus, if we combine
the pivot move and the cut-and-permute move, we obtain an algorithm
which does not have the quasi-ergodicity problems of the pivot algorithm.
Also, by a careful implementation, it is possible to obtain the same optimal
behavior as the pivot algorithm for polymers in the bulk: the autocorrela-
tion times of global observables in CPU units increase only as N. It must
be noted that, even though we consider here only the case of a flat surface,
the results should apply to any convex surface, for instance to polymers
grafted outside a sphere: in this respect, the plane should be the worst case.
Note also that we do not consider here any interaction between the surface
and the walk other than the excluded-volume interaction. Nonetheless, the
results should also hold in the presence of attractive interactions as long as
they are sufficiently weak and the walk is not absorbed. In this case, it is
probably important to add local moves (and, perhaps, bilocal moves as
defined in ref. 12) to speed up the dynamics near the surface. Finally, we
want to notice that this algorithm is also needed if we want to apply the
join-and-cut algorithm of ref. 14 to walks in the presence of a surface.
Indeed, the ideas that are presented here apply directly to that algorithm,

248 Causo

so that by using the cut-and-permute together with the pivot move, one
should be able to have a version of the join-and-cut algorithm which works
reasonably well also in the presence of a surface.
The paper is organized as follows. In Sections 2 and 3 we consider the

pivot and the cut-and-permute move and discuss in detail the acceptance
fraction, paying particular attention to those moves in which the pivot or
the cutting point is near the grafted endpoint of the walk. In Section 4 we
discuss the implementation of the two moves and compute the scaling
behavior of the average CPU time for each move. In Section 5 we discuss
the full algorithm, showing its optimal behavior.

2. THE PIVOT MOVE IN THE PRESENCE OF A SURFACE

In this paper we will consider N-step self-avoiding walks on a
d-dimensional lattice Zd in the presence of an excluded surface S of equa-
tion S(xF)=0, xF ¥ Zd. A SAW w is a sequence of lattice points {w0,..., wN},
such that wi, wi+1 are lattice neighbours and wi] wj for i] j. The walk is
confined in the outward half-space S(xF) \ 0 with its first vertex grafted at S
and fixed at position w0. The state space is therefore

WSN(w0)={w={w0,..., wN} | S(wi) \ 0, i=1,..., N and wi] wj, i] j}
(1)

As probability measure on the space WSN(w0), we will consider the
uniform one, which gives equal weight to every allowed walk, i.e.,
p(w)= 1

cSN
, where cSN is the cardinality of W

S
N(w0). In the following we will

assume S to be a (d−1) hyperplane of equation z=0.
In WSN(w0) we will first consider the pivot algorithm.

(8, 9) The elemen-
tary move of the algorithm in the bulk consists of the following steps:

(1) Given a walk configuration w={w0,..., wN}, an integer k ¥
{0,..., N−1} is chosen at random and the corresponding monomer wk is
taken as pivot point.
(2) An element g of the symmetry group of the lattice is chosen at

random with probability pg and a new walk is built by applying it to
the part of the chain which follows the pivot point, using wk as fixed point
of the transformation. A walk wŒ={w −0,..., w

−

N}, where the new monomer
coordinates are given by

w −i=˛
wi for 1 [i [k,
wk+g(wi−wk) for k+1 [i [N

(2)

is obtained.

Cut-and-Permute Algorithm for Self-Avoiding Walks 249

(3) If the walk wŒ is not self-avoiding the move is rejected and the
original walk w is kept. Otherwise, wŒ is taken as new current walk.

We require pg=pg −1 in order to satisfy detailed balance. In the bulk
the algorithm is ergodic if all axes reflections and either all p/2 rotations or
all diagonal reflections are given nonzero probability. (8) Note that in the
bulk, in step 1, we can restrict k to belong to {1,..., N−1}, since pivot
moves with pivot w0 are symmetry transformations. However, this is not
the case in the presence of a surface, and it is thus important to include
k=0.
A further requirement has to be satisfied in order to take into account

the excluded region:

(4) If wŒ ¨ WSN(w0), i.e., if S(w
−

i) < 0 for some i=1,..., N, the move is
rejected and the old walk is counted again.

Because of the presence of the excluded region, ergodicity is not always
satisfied. If S is a (d−1)-dimensional hyperplane, one can prove that axes
reflections and p/2 rotations are enough to ensure ergodicity. However,
even if ergodicity is satisfied, one may be worried by the fact that in order
to explore the relevant phase space, the algorithm has to go through highly
improbable configurations. For instance, if we denote by ẑ the direction
perpendicular to the hyperplane S, we expect the algorithm to be quite slow
in updating the links at the beginning of the walk that are directed in the ẑ
direction. Indeed, transformations that have the pivot near the surface and
that modify the ẑ direction—moves involving the inversion of the z-axis,
reflections with respect to the diagonals, p/2 rotations in the x=0 or y=0
planes—are unlikely to be accepted because of the excluded region.
Therefore, it is important to study the dynamic behaviour of the algo-

rithm as a function of the pivot point in order to determine whether the
algorithm is still efficient. For a generic move based on a lattice symmetry
transformation g applied in the pivot point wk we can define a local
acceptance fraction fg, piv(N, k). In the scaling limit NQ., kQ. with
k/N finite, the local acceptance fraction is expected to satisfy the scaling
Ansatz

fg, piv(N, k) %N−pg, pivhg, piv(k/N) (3)

where pg, piv is the exponent which asymptotically governs the decay of the
global acceptance fraction for NQ. and hg, piv(k/N) is a scaling function.
For small values of a — k/N the behaviour of the scaling function hg, piv(a)
depends drastically on whether or not the transformation g preserves the z
coordinate of the walk.

250 Causo

In order of analyse quantitatively the dynamic behaviour of the algo-
rithm, we group the pivot moves into equivalence classes. Two pivot
moves which are based on the symmetries g and gŒ are said to be equiva-
lent if there exists a global symmetry s—i.e., a transformation of the whole
walk—which preserves the geometry of the system (i.e., a lattice symmetry
which does not modify the z coordinates) such that, for every walk
w ¥ WS(w0) and for every pivot point wk, the walk which is obtained by
applying a pivot move based on gŒ to the globally s-transformed walk
s(w) in the pivot point w −k=s(wk) and then transforming back via s

−1

coincides with the walk obtained from w by means of a pivot move based
on the symmetry g with pivot point wk. In formulae, if we denote by Gk
the operator associated with the pivot move based on g applied on
monomer k, then g and gŒ are equivalent, if, for every k, Gk=s−1 p
G −k p s. For instance, consider the transformations g: (x, y, z)Q (x, z, y)
and gŒ: (x, y, z)Q (x, −z, −y). It is a simple matter to show that they
are equivalent: It is enough to consider the p/2 rotation s: (x, y, z)Q
(x, −z, y).
In 3 dimensions the original 47 different moves are classified in 15

different classes. Moves belonging to a given class have exactly the same
critical behaviour. Therefore, in the following we will study Eq. (3) for
different classes of moves.
In Fig. 1 we report the acceptance fraction for the 15 classes as

a function of a, for N=100. For small a, that is for pivot points that
are near the surface, there are essentially three types of behaviour.
Moves that involve the inversion of the z-axis have a very low acceptance
rate: for a=0.1 the acceptance of, say, reflections with respect to the
z-axis is 0.04 and it drops further to 0.0045 for a=0.05. Transformations
that involve p/2 rotations and diagonal reflections have a better behaviour
although the acceptance still drops as aQ 0. Transformations that do not
modify the z-direction are instead unaffected by the presence of the
surface.
Although the behaviour of the acceptance fraction as a function of a is

radically different between SAW in the bulk and SAW in a half-space, the
critical behaviour of the global acceptance fraction averaged over k is very
similar.
Denoting with fi, piv(N, k) the acceptance fraction of the class of

moves i applied in the pivot point wk, and with f
i, piv
N its average over k, we

expect f i, pivN to vanish as the length of the walk increases as

f i, pivN =
1
N

C
N−1

k=0
fi, piv(N, k) ’N−pi, piv(Ai+Bi/NDi+·· ·) (4)

Cut-and-Permute Algorithm for Self-Avoiding Walks 251

Fig. 1. Acceptance fraction for the different classes of pivot moves as a function of the
rescaled variable a=k/N, for N=100. Three kinds of behaviour are visible at small values
of a. At a=0 the acceptance fraction vanishes for 5 classes of moves transforming zQ −z, it
is small for 6 classes corresponding to p/2 rotations and diagonal reflections in the (y, z) and
(z, x) planes, while it is not affected by the presence of the surface for the remaining 4 classes
of moves which do not modify the z coordinate. The correspondence between symbols and
classes of lattice symmetries as defined in Section 2 is the following: 1.(a) z-axis inversion (i),
1.(b) x or y-axis inversion (×−|), 2.(a) ±p/2 rotation in yz [or zx] planes (I), 2.(b) ±p/2
rotation in the xy plane (h), 3.(a) p rotation in yz [or zx] planes (+), 3.(b) p rotation in the
xy plane (×), 4.(a) diagonal reflection in the yz [or zx] planes (n), 4.(b) diagonal reflection
in the xy plane (G), 5.(a) diagonal reflection in the yz [or zx] plane and x [resp. y] axis refl.
(N), 5.(b) diagonal reflection in the xy plane and z-axis inversion (H), 6.(a) ±p/2 rotation in
the yz [or zx] planes and x [resp. y] axis refl.(g), 6.(b) ±p/2 rotation in the xy plane and
z-axis inversion (q), 7. 3-axes reflection (Q), 8. diagonal reflection in the yz or zx planes and
±p/2 rotation in the xy plane (), 9. two diagonal reflections, one in the yz or in the zx
plane and the other in the xy plane ().

where the index i indicates a symmetry class, Di is the corresponding
leading correction-to-scaling exponent, and Ai, Bi are non-universal
amplitudes.
Before giving a quantitative estimate of the exponents pi, piv, we try to

give heuristically a rough estimate of the relative order of magnitude of the
acceptance exponents in the bulk and in the presence of the surface. The
argument which we use was already introduced in ref. 8 for SAW’s in the
bulk and we simply extend it to the case of SAW’s in a half-space.

252 Causo

If the two parts of the walk w[0, k]={w0,..., wk} and w[k, N]=
{wk,..., wN} are considered as independent, the local acceptance fraction
for any applied lattice symmetry in the bulk would be given by

fi, piv(N, k) %
cN
ckcN−k

(5)

where ck is the number of walks of length k. For kQ.,

ck ’ mkkc−1 (6)

where m is the critical fugacity and c % 1.1575(5), (15) so that we have

f i, pivN ’N1− c (7)

and pi, piv % c−1 % 0.16.
In the presence of the surface the same argument gives

fi, piv(N, k) %
c̃N(0)

c̃k(0) c̃N−k(wk)
(8)

where c̃k(rF) is the number of walks of length N starting from rF. For kQ.,
c̃k(0) ’ mkk c̃−1, where m is a fugacity which is identical to that appearing in
Eq. (6) and c̃ a new critical exponent. In three dimensions, c̃ % 0.68. (16–18)

Assuming wk to be at a (macroscopically) finite distance from the surface
we can take c̃N−k(wk)3 cN−k, where cN−k scales according to Eq. (6). Then,
Eq. (8) gives again f i, piv ’N1− c, i.e., pi, piv % c−1 % 0.16. Thus, heuristi-
cally, we expect the acceptance exponents pi, piv to be of the same order in
the presence of the surface and in the bulk. This is confirmed by the
numerical estimates.
In order to compute the acceptance exponents pi we considered walks

of length N=100, 200, 400, 800, 4000, 8000, 16000, 32000 and performed
fits of the global acceptance fraction for each class of moves to a simple
power law. In order to study the effect of the subleading terms appearing in
(4) we performed different fits using only data for N \Nmin for increasing
values of Nmin=100,..., 16000. We obtained as a result the effective expo-
nents which are reported in Table I and which approach pi as the lower
cutoff Nmin increases.
Except for a few cases, which in the following we indicate with a star,

the results are stable for walks of length N \ 4000. Our best estimates for
the different classes of moves are:

Cut-and-Permute Algorithm for Self-Avoiding Walks 253

Table I. Acceptance Fraction and Acceptance Exponent for Different Equivalence

Classes of Pivot Moves

N fpiv, iN ±dfpiv, iN ppiv±dppiv q2 DF

1.(a) (x, y, z)Q (x, y, −z)

100. 0.44198±0.00036 0.09280±0.00027 15.311 6
200. 0.41514±0.00012 0.09297±0.00028 11.529 5
400. 0.38911±0.00070 0.09266±0.00054 11.051 4
800. 0.36420±0.00049 0.09250±0.00066 10.887 3
4000. 0.31525±0.00051 0.09572±0.00151 5.342 2
8000. 0.29568±0.00128 0.09188±0.00469 4.592 1
16000. 0.27550±0.00045 0.07940±0.00747 0.000 0
32000. 0.26075±0.00128

1.(b) (x, y, z)Q (−x, y, z)K (x, −y, z)

100. 0.73933±0.00010 0.08937±0.00006 240.326 6
200. 0.69716±0.00018 0.09035±0.00009 38.684 5
400. 0.65530±0.00039 0.09102±0.00017 17.865 4
800. 0.61704±0.00031 0.09167±0.00024 2.573 3
4000. 0.53241±0.00048 0.09251±0.00113 1.988 2
8000. 0.49970±0.00012 0.09511±0.00216 0.002 1
16000. 0.46785±0.00092 0.09542±0.00712 0.000 0
32000. 0.43791±0.00198

2.(a) (x, y, z)Q (−z, y, x)K (z, y, −x)K (x, −z, y)K (x, z, −y)

100. 0.49426±0.00013 0.10258±0.00008 92.048 6
200. 0.46014±0.00107 0.10203±0.00010 2.764 5
400. 0.42768±0.00005 0.10202±0.00010 1.642 4
800. 0.39837±0.00014 0.10191±0.00019 1.142 3
4000. 0.33805±0.00021 0.10202±0.00081 1.121 2
8000. 0.31508±0.00010 0.10337±0.00161 0.188 1
16000. 0.29391±0.00146 0.10670±0.00786 0.000 0
32000. 0.27296±0.00062

2.(b) (x, y, z)Q (y, −x, z)K (−y, x, z)

100. 0.67272±0.00006 0.09676±0.00005 1269.317 6
200. 0.62958±0.00065 0.10012±0.00011 28.757 5
400. 0.59014±0.00005 0.10018±0.00011 6.794 4
800. 0.55070±0.00006 0.10043±0.00015 1.166 3
4000. 0.46879±0.00077 0.10002±0.00060 0.663 2
8000. 0.43679±0.00025 0.09978±0.00067 0.010 1
16000. 0.40768±0.00070 0.10003±0.00270 0.000 0
32000. 0.38037±0.00028

254 Causo

Table I. Continued

N fpiv, iN ±dfpiv, iN ppiv±dppiv q2 DF

3.(a) (x, y, z)Q (x, −y, −z)K (−x, y, −z)

100. 0.34586±0.00017 0.13240±0.00015 138.561 6
200. 0.31323±0.00014 0.13106±0.00019 7.738 5
400. 0.28620±0.00078 0.13156±0.00034 4.618 4
800. 0.26141±0.00013 0.13158±0.00035 4.535 3
4000. 0.21167±0.00010 0.13383±0.00117 0.457 2
8000. 0.19300±0.00021 0.13462±0.00269 0.350 1
16000. 0.17556±0.00049 0.13054±0.00740 0.000 0
32000. 0.16037±0.00069

3.(b) (x, y, z)Q (−x, −y, z)

100. 0.58549±0.00055 0.13128±0.00016 37.268 6
200. 0.53739±0.00008 0.13145±0.00016 6.018 5
400. 0.49089±0.00020 0.13147±0.00036 6.014 4
800. 0.44774±0.00010 0.13086±0.00046 1.565 3
4000. 0.36295±0.00032 0.13291±0.00172 0.044 2
8000. 0.33084±0.00094 0.13242±0.00358 0.020 1
16000. 0.30205±0.00158 0.13367±0.00964 0.000 0
32000. 0.27532±0.00114

4.(a) (x, y, z)Q (x, z, y)K (x, −z, −y)K (z, y, x)K (−z, y, −x)

100. 0.50437±0.00017 0.09358±0.00010 165.230 6
200. 0.47158±0.00072 0.09278±0.00012 40.909 5
400. 0.44132±0.00008 0.09277±0.00012 39.705 4
800. 0.41398±0.00001 0.09291±0.00014 34.737 3
4000. 0.35583±0.00027 0.09094±0.00049 16.959 2
8000. 0.33377±0.00039 0.08875±0.00094 9.538 1
16000. 0.31270±0.00022 0.08538±0.00144 0.000 0
32000. 0.29473±0.00021

4.(b) (x, y, z)Q (y, x, z)K (−y, −x, z)

100. 0.68479±0.00026 0.09004±0.00012 154.206 6
200. 0.64473±0.00098 0.09132±0.00016 13.171 5
400. 0.60772±0.00023 0.09140±0.00016 6.351 4
800. 0.57025±0.00015 0.09133±0.00019 5.922 3
4000. 0.49255±0.00035 0.09107±0.00081 5.808 2
8000. 0.46179±0.00022 0.08866±0.00141 1.507 1
16000. 0.43448±0.00041 0.09672±0.00671 0.000 0
32000. 0.40631±0.00185

Cut-and-Permute Algorithm for Self-Avoiding Walks 255

Table I. Continued

N fpiv, iN ±dfpiv, iN ppiv±dppiv q2 DF

5.(a) (x, y, z)Q (−x, z, y)K (−x, −z, −y)K (z, −y, x)K (−z, −y, −x)

100. 0.40080±0.00015 0.13372±0.00013 709.276 6
200. 0.36448±0.00073 0.13174±0.00015 21.659 5
400. 0.32989±0.00004 0.13170±0.00015 4.219 4
800. 0.30091±0.00033 0.13124±0.00039 2.576 3
4000. 0.24312±0.00029 0.13024±0.00083 0.710 2
8000. 0.22245±0.00042 0.13062±0.00179 0.654 1
16000. 0.20294±0.00013 0.12917±0.00253 0.000 0
32000. 0.18556±0.00030

5.(b) (x, y, z)Q (y, x, −z)K (−y, −x, −z)

100. 0.32210±0.00024 0.13234±0.00030 46.991 6
200. 0.29528±0.00052 0.13115±0.00045 33.813 5
400. 0.26675±0.00019 0.13021±0.00048 4.807 4
800. 0.24413±0.00015 0.13098±0.00063 1.138 3
4000. 0.19781±0.00022 0.13268±0.00228 0.532 2
8000. 0.18073±0.00048 0.13566±0.00469 0.006 1
16000. 0.16458±0.00098 0.13657±0.01264 0.000 0
32000. 0.14971±0.00096

6.(a) (x, y, z)Q (−x, z, −y)K (−x, −z, y)K (−z, −y, x)K (z, −y, −x)

100. 0.39576±0.00008 0.13914±0.00009 149.867 6
200. 0.35778±0.00084 0.13683±0.00021 5.301 5
400. 0.32505±0.00030 0.13683±0.00021 5.299 4
800. 0.29599±0.00002 0.13687±0.00022 3.607 3
4000. 0.23732±0.00012 0.13556±0.00076 0.284 2
8000. 0.21601±0.00022 0.13525±0.00149 0.226 1
16000. 0.19652±0.00035 0.13363±0.00372 0.000 0
32000. 0.17913±0.00034

6.(b) (x, y, z)Q (−y, x, −z)K (y, −x, −z)

100. 0.31919±0.00020 0.13629±0.00011 108.973 6
200. 0.28836±0.00025 0.13629±0.00012 108.963 5
400. 0.26430±0.00003 0.13642±0.00012 35.570 4
800. 0.23944±0.00023 0.13422±0.00040 2.428 3
4000. 0.19272±0.00010 0.13371±0.00069 1.603 2
8000. 0.17576±0.00007 0.13506±0.00127 0.002 1
16000. 0.16007±0.00034 0.13522±0.00406 0.000 0
32000. 0.14575±0.00027

256 Causo

Table I. Continued

N fpiv, iN ±dfpiv, iN ppiv±dppiv q2 DF

7. (x, y, z)Q (−x, −y, −z)

100. 0.27382±0.00011 0.16839±0.00019 1141.917 6
200. 0.24357±0.00012 0.16438±0.00025 516.155 5
400. 0.21512±0.00000 0.16223±0.00027 1.987 4
800. 0.19260±0.00041 0.16332±0.00095 0.554 3
4000. 0.14818±0.00015 0.16370±0.00174 0.488 2
8000. 0.13222±0.00014 0.16129±0.00404 0.054 1
16000. 0.11810±0.00063 0.15868±0.01196 0.000 0
32000. 0.10580±0.00067

(x, y, z)Q (y, z, −x)K (y, −z, x)K (−y, z, x)K (−y, −z, −x)
8. (x, y, z)Q (z, x, −y)K (z, −x, y)K (−z, x, y)K (−z, −x, −y)

100. 0.42766±0.00006 0.12071±0.00007 198.212 6
200. 0.39272±0.00011 0.11972±0.00011 66.816 5
400. 0.36094±0.00019 0.11894±0.00015 11.374 4
800. 0.33180±0.00008 0.11872±0.00017 1.545 3
4000. 0.27392±0.00016 0.11811±0.00077 0.871 2
8000. 0.25247±0.00009 0.11911±0.00151 0.282 1
16000. 0.23265±0.00043 0.12131±0.00442 0.000 0
32000. 0.21389±0.00052

(x, y, z)Q (y, z, x)K (y, −z, −x)K (−y, −z, x)K (−y, z, −x)
9. (x, y, z)Q (z, x, y)K (z, −x, −y)K (−z, −x, y)K (−z, x, −y)

100. 0.42794±0.00003 0.12050±0.00008 138.509 6
200. 0.39344±0.00081 0.11872±0.00017 8.153 5
400. 0.36165±0.00006 0.11871±0.00017 7.110 4
800. 0.33281±0.00010 0.11821±0.00026 0.022 3
4000. 0.27512±0.00026 0.11813±0.00094 0.013 2
8000. 0.25351±0.00017 0.11821±0.00138 0.007 1
16000. 0.23351±0.00065 0.11781±0.00485 0.000 0
32000. 0.21520±0.00040

1. (a) z-axis inversion: ppiv=0.0919(47)a,
(b) x or y-axis inversion: ppiv=0.0925(11);

2. (a) ±p/2 rotation in yz [or zx] planes: ppiv=0.10202(81),
(b) ±p/2 rotation in the xy plane: ppiv=0.10002(60);

3. (a) p rotation in yz [or zx] planes: ppiv=0.1338(12),
(b) p rotation in the xy plane: ppiv=0.1329(17);

Cut-and-Permute Algorithm for Self-Avoiding Walks 257

4. (a) diagonal reflection in the yz [or zx] planes: ppiv=
0.08875(94)a,

(b) diagonal reflection in the xy plane: ppiv=0.0887(14)a;

5. (a) diagonal reflection in the yz [or zx] plane and x [resp. y] axis
refl.: ppiv=0.13024(83),

(b) diagonal reflection in the xy plane and z-axis inversion : ppiv=
0.1327(23);

6. (a) ±p/2 rotation in the yz [or zx] planes and x [resp. y] axis
refl.: ppiv=0.13556(76),

(b) ±p/2 rotation in the xy plane and z-axis inversion: ppiv=
0.13371(69);

7. 3-axes reflection: ppiv=0.1637(17);

8. diagonal reflection in the yz or zx planes and ±p/2 rotation in
the xy plane: ppiv=0.11811(77);

9. two diagonal reflections, one in the yz or in the zx plane and the
other in the xy plane: ppiv=0.11813(94).

Here we have grouped the equivalence classes in the presence of the
surface in 9 groups. These groups correspond to the 9 equivalence classes
for the algorithm in the bulk, where one can consider global transforma-
tions s that do not preserve the z coordinate. From the results we observe
that the exponent ppiv depends only on the equivalence class in the bulk. In
agreement with the above-reported heuristic argument, the presence of the
surface has no influence on the acceptance exponents of the different
classes of moves, but only on the shape of the scaling functions hi, piv(a)
introduced in Eq. (3). On the other hand, one should observe that the
acceptance exponents which correspond to different bulk equivalence
classes are different, with the only exception of classes 8. and 9., which can
be hardly distinguished even in the presence of the surface. One should also
notice that the exponent is larger for 3-axes reflections than for diagonal
reflections. As it has been already noticed in ref. 8 this can be understood
intuitively. Indeed, two subwalks on the opposite sides of a pivot point
tend to be directed and occupy on average opposite regions of space. We
can imagine, for instance, that the two subwalks occupy two opposite
octants which touch at the pivot point. The subwalk w[k, N] is not moved
in the opposite octant by pivot moves based, for instance, on a one-axis
reflection, a diagonal reflection or a p/2 rotation, while a 3-axes reflection
will move the whole subwalk in the opposite octant. Therefore, it should
have a higher probability of rejection.
The stability of most of the fits with Nmin seems to rule out the possi-

bility that all equivalence classes have the same exponent and that the

258 Causo

discrepancies are due to residual corrections to scaling. Different symme-
tries have apparently different acceptance exponents. If this is correct, the
global acceptance exponent ppiv averaged over all transformations would
coincide with the exponent of the pivot move which, in the limit NQ.,
has the highest probability of being accepted, that is ppiv % 0.089. This
exponent is lower than that reported in ref. 9 which was obtained by
averaging over all transformations. We mention that if we also perform the
group average we obtain ppiv % 0.116(1). The group average exponent is
only slightly higher than what can be found using the data reported in
ref. 9 for the pivot algorithm in the bulk, for which p % 0.1132.

2 We have been informed that the acceptance fractions f reported in ref. 9 for d=3 (but not
for d=2) are in error because the program performed with probability 1/48 an identity
move (which is always accepted). Therefore, data there should be corrected by the map
fQ (48/47)(f−1/48). This mistake was guessed by Tom Kennedy on the basis of his own
pivot simulations (see ref. 19) and was confirmed by Madras and Sokal’s examination of
their program. Aware of this problem, we recomputed the acceptance fraction exponent and
found p % 0.113.

Now we can use our best estimates of the acceptance exponents for
testing our scaling Ansatz (3) and determining the behaviour of the scaling
functions hi, piv(a) for a — k/NQ 0. We will show that for aQ 0

hi, piv(a) ’ aqi (9)

with qi < 0 for the ‘‘good’’ moves which do not change the z coordinate of
the walk, and qi > 0 otherwise.
In Fig. 2 we report fi, piv(N, k) · (N/100)pi, piv=ĥi, piv(a) for 4 different

classes of moves: 1.(b), 3.(b), 9. and 3.(a). They are representative of the
different types of behaviour for aQ 0. One observes very good scaling, the
data for different N falling one on top of each other, except at small values
of a for those moves for which ĥi, piv is nonzero at small a in the range of N
values we have considered. Indeed, for moves 1.(b) and 3.(b) the estimates
increase as N increases: for N=100 we would estimate ĥ1.(b), piv(0) % 0.92
and ĥ3.(b), piv(0) % 0.84, while for N=32000 we have ĥ1.(b), piv(0) % 1.12 and
ĥ3.(b), piv(0) % 1.10. For the moves of class 9., instead, the curve for N=100
is slightly higher than that for N=4000, 32000: for N=100 we would
estimate ĥ9., piv(0) % 0.15, while for N=4000, 32000 we would obtain
ĥ9., piv(0) % 0.07, although the data for N=32000 seem to be even lower.
Clearly, for small a, there are significant corrections to scaling and indeed
we will now show that h1.(b), piv(a) and h3.(b), piv(a) diverge for aQ 0, while
h9., piv(0)=0.

Cut-and-Permute Algorithm for Self-Avoiding Walks 259

Fig. 2. Scaling functions in the variable k/N for the pivot acceptance fraction. The 4 classes
of moves considered are, in order of increasing global acceptance: 3.(a), 9., 3.(b) and 1.(b).

Consider first moves in classes 1.(b) and 3.(b) and in general all the
moves preserving the z-coordinate of the walks. They are only marginally
affected by the presence of the surface. The only effect is that, since the
surface induces a monomer depletion near the surface, a move applied in a
pivot point wk with small k has higher probability of being accepted than
the same move applied in wN−k, explaining the slight asymmetry of the
scaling curves hi, piv(a). Moreover, we expect the local acceptance fraction
fi, piv(N, k) to remain finite as N increases with k fixed and small. By com-
paring with the scaling Ansatz (3), it follows that hi, piv(a) ’ a−pi, piv, i.e.,
qi=−pi, piv and the scaling function diverges for aQ 0. This is confirmed
by the numerical results: indeed, ĥ1.(b), piv(a) and ĥ3.(b), piv(a) increase as
NQ..
Let us now consider the classes of moves which change, but do not

invert, the z-coordinate, for instance class 9. In order to understand the
behaviour of hi, piv(a) for aQ 0 we must compute the local acceptance
probability for k fixed and small. For this purpose, we have considered the
acceptance fraction averaged over the pivot points k [kmax, i.e.,

f̃9., piv(N, kmax)=
1

kmax+1
C
kmax

k=0
f9., piv(N, k) (10)

260 Causo

For fixed kmax, it decays faster than the global acceptance fraction. For
instance, for kmax=20, for the moves that involve p/2 rotations or diago-
nal reflections in the (y, z), (z, x) planes (classes 8. and 9.), we have
numerically found f̃8., 9., piv(N, 20) ’N−0.49. It will be shown in the following
that this exponent is close to the one which characterizes the probability
that a generic bulk N-step SAW grafted at the surface belongs to WSN(w0).
Since we expect that f8., 9., piv(N, kmax) % f̃8., 9., piv(N, kmax) for small k, the
scaling function h8., 9., piv(a) is expected to vanish with q8., 9. % 0.49−
p8., 9., piv % 0.37. Similar behaviour is expected for all classes of moves (2.(a),
4.(a), 5.(a), 6.(a), 8. and 9.) which do not invert the ẑ axis.
The behavior of moves like 1.(a) that invert the z-axis is much worse.

For instance, we performed a long run for N=800, in which such moves
were attempted on the first 20 monomers approximately 21000 times, and
none of the attempts was successful. Fitting directly ĥ1.(a)(a) for a=
k/N [0.1 for N=100, 800, 4000, one finds q1.(a)=3.8(3).
It can be useful to get heuristically a rough idea of the order of mag-

nitude of the exponent q1.(a). Let us denote with mN(w, k) the maximum
elongation in the z direction of the monomers following the pivot point

mN(w, k) — max
i=k+1,..., N

wzi (11)

where wzi is the z-coordinate of the monomer wi. If we denote with w
z
k the

z-coordinate of the pivot point, the proposed move does not give rise to
collisions with the surface if the inequality

wzk >
mN(w, k)
2

(12)

is satisfied. Thus, if the pivot point is one of the first vertices following the
grafted end, Eq. (12) states that the move may be successful only for those
walks that have nearly all their monomers within few lattice planes from
the surface and therefore we expect that h(a) vanishes for aQ 0. It is
known (see ref. 6) that for NQ., zQ. and z — z/Nn fixed and small,
the probability distribution PN(z) of the fraction of monomers which lay at
a distance z from the surface scales as

PN(z) ’
1
Nn
z
1
n
−1 (13)

Therefore, the fractionW(z) of monomers that lay within a distance z from
the surface scales as

W(z)=F
z

0
PN(zŒ) dzŒ ’ z1/n (14)

Cut-and-Permute Algorithm for Self-Avoiding Walks 261

If k is small but already in the scaling regime, we expect that wzk ’ k
n and

therefore W(2wzk) ’ k/N=a. Therefore, since the average fraction of
monomers laying in the strip z < 2wzk is a, the average fraction of walks
such that all their monomers lay in the strip is less than a. It follows that
q1.(a) \ 1.
Clearly, the pivot move is inefficient when the pivot is near the surface.

Therefore, we expect the dynamics of observables that strongly depend on
the behavior of the walk near the surface—for instance, the number of
monomers on the surface—to be much slower than that of global observ-
ables. Also, note that yexp becomes rapidly large, making it very difficult to
thermalize the system using only the pivot algorithm. In the following
section we discuss a second nonlocal move that solves the problems we
have discussed.

3. THE CUT-AND-PERMUTE MOVE

In this section we want to consider a different nonlocal move that is
able to modify the walk near the surface. By adding it to the pivot algo-
rithm we will obtain an algorithm without the quasi-ergodicity problems
we have discussed above. Of course, we do not want to destroy the optimal
dynamic behaviour of the pivot algorithm, and thus we want to introduce
a move for which the mean CPU time per succesful move scales simply
with N. The move we introduce here consists in cutting the walk in two
parts, and in rebuilding the walk in reverse order.
The elementary cut-and-permute move works as follows:

1. Given an N-step SAW w ¥ WSN(w0) , choose with probability pc a
cut-point wc with c ¥ {1, 2,..., N−1}. The point wc divides the walk in two
subwalks w1={w1,..., wc} and w2={wc,..., wN}.

2. Cut the walk in the cut-point and rebuild it arranging the two
subwalks w1 and w2 in reverse order. The resulting walk wŒ has vertices at
positions

w −i=˛
w0+wc+i−wc for 0 [i [N−c,
wN−wc+wi−N+c for N−c+1 [i [N

(15)

3. The proposed move is accepted if the resulting walk wŒ is
self-avoiding and does not intersect the excluded region.

It is easy to see that the move satisfies detailed balance as long as
pc=pN−c.

262 Causo

Fig. 3. A cut-and-permute move: here c=17 and the symmetry g is an inversion of the
x-axis.

It is also possible to incorporate in the cut-and-permutemove the ‘‘good’’
pivot transformations, i.e., those that do not change the z-coordinate. We
thus define an ‘‘improved’’ cut-and-permute move as follows (the move is
illustrated in Fig. 3):

1. Given an N-step SAW w ¥ WSN , choose with probability pc a cut-
point wc with c ¥ {1, 2,..., N−1}. The point wc divides the walk in two
subwalks w1={w1,..., wc} and w2={wc+1,..., wN}.

2. Choose with probability Pg an element g belonging to the symme-
try group of the plane which is parallel to the surface. In three dimensions
the symmetry group is the dihedral group D4 in the z=0 plane, whose 8
elements are ±p/2 rotations, p rotation, axis inversions, diagonal reflec-
tions, and the identity.

3. Apply the chosen symmetry to the subwalk w2 to obtain the
subwalk w2Œ={wc, wc+g(wc+1−wc),..., wc+g(wN−wc)}.

4. Cut the walk in the cut-point and rebuild it arranging the two
subwalks w1 and w2Œ in reverse order. The resulting walk wŒ has vertices at
positions

w −i=˛
w0+g(wc+i−wc) for 0 [i [N−c,
g(wN−wc)+wi−N+c for N−c+1 [i [N

(16)

5. The proposed move is accepted if the resulting walk wŒ is self-
avoiding and does not intersect the excluded region.

The improved cut-and-permute move does not satisfy detailed balance.
Indeed, the walk wŒ obtained from w with a cut-and-permute move in the
cut-point wc cannot be transformed back to the original walk w by any
move applied in wN−c, since the subwalk of w following the cut-point has

Cut-and-Permute Algorithm for Self-Avoiding Walks 263

changed its orientation in space and its orientation cannot be modified in
the second cut-and-permute move. However, the move still leaves the
probability measure invariant as long as pc=pN−c. Indeed, if we perform a
move based on g in the point wc and then a move based again on g in the
point wN−c, we obtain the walk wœ=g(w) corresponding to the application
of symmetry g to the original walk. If we denote by p(wQ wŒ) the proba-
bility that the move applied to w gives as result wŒ, from what we have
described it follows that p(wQ wŒ)=p(wŒQ g(w)). Thus,

C
wŒ

p(wŒ) p(wŒQ w)=C
wŒ

1
cSN
p(g−1(w)Q wŒ)=

1
cSN
=p(w) (17)

as required. In the following we will consider the improved cut-and-
permute move, but, as we shall show explicitly, nothing would change by
using the simpler version.
As it has been done for the pivot algorithm, we can define equivalence

classes of cut-and-permute moves and study the acceptance fraction
fi, cp(N, c) as a function of the position c of the cut-point and its average
f i, cpN over all points c. For large N, we expect a scaling behavior of the
form

f i, cpN ’N−pcp (18)

We have not added an index i to pcp because, as we shall see, this exponent
does not depend on the equivalence class.
To give an estimate of the exponent pcp, we can use again a heuristic

argument in which we consider the two subwalks in which the original walk
w is divided at the cut-point wc as independent. We also assume that the
probability that the attempted move is accepted is the product of the
probability P1(c) that the concatenation of the two subwalks gives a walk
which does not have self-collisions times the probability P2(c) that the
subwalk w2, transformed under a D4 symmetry and translated with its first
vertex on the surface does not intersect the forbidden region. Repeating the
argument presented for the pivot case, we have

P1(c)=
c̃N
c̃ccN−c

(19)

which, by averaging over c, gives P1 ’N−(c−1) ’N−0.1575(5). The second
probability is given by

P2(c)=
c̃N−c
cN−c

(20)

264 Causo

which, after averaging, gives P2 ’N−(c− c̃) ’N−0.48. The global acceptance
fraction of the cut-and-permute move is expected to scale as fcp=P1 ·
P2 ’N−pcp ’N−2c+1+c̃ ’N−0.63. This argument is likely to give an overes-
timate of the exponent pcp for the following reasons. The original subwalk
w1 which is grafted at the surface is directed, so that P1(c) is underes-
timated. Moreover, the walk w2 is expected to have a residual directionality
in the +ẑ direction so that the probability that w2 does not intersect the
forbidden region is expected to be larger than P2(c). Table II contains
numerical estimates of the acceptances fcp, iN for different classes of moves
in D4 at different values of N, averaged over the cutting point c. We have
fitted the data for N \Nmin to a power law considering increasing values
of Nmin. Systematic errors due to corrections to scaling should become
negligible for Nmin Q.. The q2 values of fits with Nmin \ 4000 indicate that
the fits are stable, with the exception of two cases. These two cases are
denoted with a star in the following list containing our best estimates for
the exponent pcp:

1. identity pcp=0.4969(35);

2. diagonal reflections pcp=0.4903(29);

3. ±p/2 rotations pcp=0.4911(21);

4. p rotation pcp=0.4873(40)a;

5. 1-axis reflection pcp=0.4929(13)a.

At variance with the pivot case the results for the different equivalence
classes are compatible within error bars: the transformation g seems to play
little role. If we average over all symmetries we obtain pcp=0.4922(20).
Note that, as expected, this result is somewhat lower than the heuristic
estimate reported above.
The exponent pcp is significantly higher than ppiv so that cut-and-

permute moves will be more rarely accepted. Numerically, we find that a
cut-and-permute move is accepted every ’ 2 (resp. ’ 20) succesful pivot
moves for N=100 (resp. N=32000). However, they represent the moves
that most effectively change the conformation of the walk near the grafted
end and thus they will play an important role in decorrelating the walk
configurations.
As for the pivot case, it is interesting to study the local acceptance

fraction as a function of c and N. For NQ., z — c/N fixed we expect a
scaling form

fcp(N, c) %N−pcphcp(z) (21)

Cut-and-Permute Algorithm for Self-Avoiding Walks 265

Table II. Acceptance Fraction and Acceptance Exponents for Equivalent Classes of

Cut-and-Permute Moves

N fcp, iN ±df
cp, i
N pcp±dpcp q2 DF

1. (x, y)Q (x, y)

100. 0.24511±0.00008 0.44881±0.00021 3544.599 6
200. 0.18075±0.00071 0.47947±0.00056 81.376 5
400. 0.13252±0.00001 0.47979±0.00057 49.763 4
800. 0.09563±0.00012 0.48524±0.00105 12.206 3
4000. 0.04397±0.00007 0.49686±0.00352 0.218 2
8000. 0.03111±0.00015 0.49507±0.00751 0.146 1
16000. 0.02214±0.00019 0.50161±0.01870 0.000 0
32000. 0.01564±0.00015

2. (x, y)Q (y, x)K (−y, −x)

100. 0.24517±0.00001 0.46012±0.00023 2179.892 6
200. 0.18130±0.00027 0.47995±0.00051 321.318 5
400. 0.13259±0.00015 0.48458±0.00059 65.902 4
800. 0.09570±0.00007 0.48753±0.00069 1.363 3
4000. 0.04373±0.00012 0.49032±0.00295 0.415 2
8000. 0.03116±0.00006 0.49210±0.00467 0.176 1
16000. 0.02219±0.00011 0.49719±0.01301 0.000 0
32000. 0.01572±0.00012

3. (x, y)Q (−y, x)K (y, −x)

100. 0.24518±0.00006 0.46855±0.00011 16481.760 6
200. 0.18142±0.00039 0.48350±0.00016 753.217 5
400. 0.13251±0.00003 0.48369±0.00016 633.232 4
800. 0.09576±0.00004 0.48822±0.00024 2.753 3
4000. 0.04386±0.00015 0.49106±0.00211 0.915 2
8000. 0.03112±0.00001 0.49005±0.00236 0.003 1
16000. 0.02217±0.00021 0.49086±0.01458 0.000 0
32000. 0.01577±0.00005

4. (x, y)Q (−x, −y)

100. 0.24507±0.00016 0.46150±0.00035 2088.088 6
200. 0.18193±0.00047 0.48081±0.00056 153.010 5
400. 0.13278±0.00007 0.48182±0.00058 93.048 4
800. 0.09579±0.00007 0.48739±0.00083 3.736 3
4000. 0.04365±0.00015 0.48733±0.00402 3.736 2
8000. 0.03121±0.00007 0.49257±0.00698 2.894 1
16000. 0.02234±0.00014 0.52741±0.02164 0.000 0
32000. 0.01550±0.00021

266 Causo

Table II. Continued

N fcp, iN ±df
cp, i
N pcp±dpcp q2 DF

5. (x, y)Q (−x, y)K (x, −y)

100. 0.24513±0.00012 0.46950±0.00015 10482.119 6
200. 0.18120±0.00055 0.48043±0.00019 2075.983 5
400. 0.13249±0.00003 0.48056±0.00019 2003.417 4
800. 0.09554±0.00000 0.48857±0.00026 21.472 3
4000. 0.04384±0.00009 0.49292±0.00136 10.893 2
8000. 0.03117±0.00007 0.49062±0.00231 9.382 1
16000. 0.02207±0.00002 0.48175±0.00371 0.000 0
32000. 0.01580±0.00004

where hcp(z) is a scaling function which encodes the dependence on the dif-
ferent cut-points. In Fig. 4 we report the function ĥcp(z)=fcp(N, c) ·
(N/100)pcp for 5 values of N using the exponent pcp given by our fits. There
is no difference in the local behaviour of the 5 classes of equivalent moves,
so the function we report refers to the total acceptance obtained by
averaging over the equivalence classes.

Fig. 4. Scaling functions in the variable c/N for the cut-and-permute acceptance fraction.
Data at different N represent the acceptance fraction averaged over the different equivalence
classes.

Cut-and-Permute Algorithm for Self-Avoiding Walks 267

Note the very good scaling: the points fall on top of each other for all
values of N.
Let us analyze now the scaling behaviour of the acceptance at fixed c.

We define the observable

f̃cp(N, cmax)=
1
2cmax
5 C
cmax

c=1
fcp(N, c)+ C

N−1

c=N−cmax

fcp(N, c)6 (22)

and study its scaling with N as NQ.. For cmax=20 a power-law fit gives
f̃cp(N, 20) %N−0.01. This is just an effective exponent and indeed it decrea-
ses in modulus as the minimum value of N considered in the fit is
increased. The results are therefore compatible with f̃cp(N, 20) % const for
Nmin \ 4000. Such a result is easy to understand. Indeed, suppose first that
N−cmax [c < N. Then the move is accepted if wŒ[0, cŒ], cŒ=N−c, does
not intersect the surface—which happens with a probability independent of
N—and does not intersect wŒ[cŒ, N], which, for large N, should be roughly
independent of N. Thus, fcp(N, c) should be constant for N large. If
1 [c [cmax, note that fcp(N, c)=fcp(N, N−c), to conclude the argument.
In conclusion, the cut-and-permute move has a good scaling behavior
exactly in the region in which the pivot moves behave badly. The addition
of the cut-and-permute move in the hybrid dynamics is therefore crucial in
speeding up the dynamics of the first steps of the walk.
As in the pivot case, since the local acceptance fraction converges to a

constant for small or large fixed values of z, the scaling function hcp(z)
increases as z−pcp for zQ 0 (resp. (1−z)−pcp for zQ 1.) This suggests that in
step 1. one can take pc different from 0 only for z near 0 and 1, i.e., set
pc=0 if aN [c [N(1−a). For instance, by taking a=1/10, we would
approximately increase the acceptance by a factor 1.7.

4. COMPUTATIONAL COMPLEXITY

In order to study the effective dynamic behaviour of the algorithm in
CPU time, it is important to determine the scaling behaviour of the CPU
time needed to generate pivot and cut-and-permute successful moves.
The CPU time depends on the data structure that is used. For the

walk we consider a sequentially allocated linear list and in order to check
for self-collisions and collisions with the surface we use a hash table as
described in ref. 8. This allows to insert a single monomer in an average
CPU time of order one. In the following we will define a CPU time unit as
the CPU time which is needed to upgrade a single monomer position.

268 Causo

In order to optimize the algorithm, it is important to mimimize the
CPU time spent in a failed attempt. This requires a careful choice of the
order in which the new walk wŒ is rebuilt.
For the pivot algorithm, ref. 8 suggested to build the new walk and

perform the self-avoidance check in the following order: w −k, w
−

k+1, w
−

k−1,...,
wk+i, wk−i,... till all monomers have been checked. The motivation was that
the probability of self-intersections is higher for those monomers which are
close to the pivot point. However, in the presence of a surface a move that
changes the z-coordinate can also fail because the new walk intersects the
surface.
Intersections with the surface occur with higher probability for those

monomers of the subwalk w[k, N] which are more likely to undergo a
large displacement, while monomers belonging to the grafted subwalk
w[0, k] are not modified and satisfy the geometrical constraint automati-
cally. In order to keep into account this effect, for the moves that change
the z-coordinates, we can use a different strategy: we insert the monomers
of the proposed walk wŒ in the hash table in the following order: w −k, w

−

N,
w −k+1, w

−

k−1, w
−

N−1,..., w
−

k+i, w
−

k−i, wN−i,..., till every monomer has been
checked once. As a measure of the CPU time spent by the algorithm we
can use the number of walk monomers I(wŒ) that are checked in the move.
If the move is successful, clearly I(wŒ)=N, while for a failed attempt

I(wŒ)=min{i: wŒ[k−i, k−1] 5 wŒ[k, k+i]]”

or wŒ[N−i, N] 5 S̊]” or wŒ[k−i, k+i] 5 S̊]”} (23)

where, following ref. 8, we denote the subwalk {w −max(i, 0), w
−

max(i, 0)+1,...,
w −min(j, N)}, with the symbol wŒ[i, j] and the half-space z < 0 with S̊. We
want now to evaluate the average time spent in checking a failed move that
is expected to scale as

Tpiv, failedN — OI(wŒ)P|failed ’Nypiv (24)

where the average over all failed moves is taken. An estimate of ypiv can be
obtained by a heuristic argument. Inserting monomers in the hash table in
the way we described before, the probability that I(wŒ) exceeds the value i
can be estimated from the scaling of the acceptance fraction. Indeed, we
expect

Prob{I(wŒ) > i}=Prob{wŒ[k−i, k+i] is SAW and does not intersect
the surface, and wŒ[N−i, N] does not intersect
the surface } ’ i−ppiv (25)

Cut-and-Permute Algorithm for Self-Avoiding Walks 269

Therefore, the average time spent in checking a failed move is expected to
scale like

Tpiv, failedN =C
N

i=0
Prob{I > i} ’N1−ppiv (26)

so that ypiv=1−ppiv. Estimates of T
piv, failed
N are reported in Table III, for

the different classes of pivot moves and different values of N. We per-
formed fits of the form (24) in order to determine ypiv, including each time
only data with N \Nmin (in Table III, Nmin is the value N reported in the
first column). We observed that in all cases ypiv increases with Nmin and
thus our results are probably a lower estimate of ypiv. Here, we report the
results with Nmin=4000 and indicate with a star those cases in which the q2

is still too large:

1. z-axis inversion: ypiv=0.8750(16),
x or y-axis inversion: ypiv=0.8234(17)a;

2. ±p/2 rotation in yz [or zx] planes: ypiv=0.8554(13)a,
±p/2 rotation in the xy plane: ypiv=0.8205(23);

3. p rotation in yz [or zx] planes: ypiv=0.82756(97)a,
p rotation in the xy plane: ypiv=0.7989(46);

4. diagonal reflection in the yz [or zx] planes: ypiv=0.8635(22),
diagonal reflection in the xy plane: ypiv=0.8470(25)a;

5. diagonal reflection in the yz [or zx] plane and x [resp. y] axis
refl.: ypiv=0.8381(13)a,
diagonal reflection in the xy plane and z-axis inversion: ypiv=
0.8342(16);

6. ±p/2 rotation in the yz [or zx] planes and x [resp. y] axis refl.:
ypiv=0.8250(18),
±p/2 rotation in the xy plane and z-axis inversion:
ypiv=0.8339(23);

7. 3-axis reflection: ypiv=0.8138(35);

8. diagonal reflection in the yz or zx planes and ±p/2 rotation in
the xy plane: ypiv=0.8476(20)a;

9. two diagonal reflections, one in the yz or in the zx plane and the
other in the xy plane: ypiv=0.85121(67)a.

If we average over all equivalence classes we obtain ypiv=0.8428(13).
These results should not be trusted too much, and in many cases the
correct estimate is probably higher. However, the important thing that
emerges is that ypiv « 1−ppiv, a result that will be used below.

270 Causo

Table III. Average Time Spent in a Failed Pivot Move and Scaling-Behaviour

Exponent ypiv for the Equivalence Classes of Pivot Moves. The Check of

Self-Avoidance was Performed as Explained in Section 4

N Tpiv, failedN ±dTpiv, failedN ypiv±dypiv q2 DF

1.(a) (x, y, z)Q (x, y, −z)

100. 12.48970±0.01355 0.85395±0.00038 1572.322 6
200. 21.88020±0.06886 0.86694±0.00051 116.838 5
400. 38.71450±0.04355 0.86837±0.00053 22.278 4
800. 70.38660±0.13222 0.87022±0.00079 12.277 3
4000. 283.17500±0.72023 0.87498±0.00163 1.072 2
8000. 516.57200±2.50767 0.87807±0.00381 0.264 1
16000. 954.17300±8.43733 0.87159±0.01318 0.000 0
32000. 1745.83000±3.99927

1.(b) (x, y, z)Q (−x, y, z)K (x, −y, z)

100. 16.83500±0.00583 0.78863±0.00030 818.622 6
200. 28.39370±0.14783 0.80608±0.00077 210.977 5
400. 47.96640±0.17382 0.80994±0.00087 122.163 4
800. 82.41200±0.31495 0.81591±0.00116 61.053 3
4000. 299.93200±0.67181 0.82335±0.00166 21.853 2
8000. 526.85700±1.76380 0.83244±0.00315 10.320 1
16000. 926.25200±2.84146 0.84895±0.00603 0.000 0
32000. 1668.36000±4.73391

2.(a) (x, y, z)Q (−z, y, x)K (z, y, −x)K (x, −z, y)K (x, z, −y)

100. 13.90580±0.00651 0.82973±0.00021 2599.558 6
200. 24.36420±0.07489 0.84812±0.00042 112.260 5
400. 43.11250±0.11340 0.84883±0.00043 45.278 4
800. 77.02470±0.01481 0.84900±0.00043 35.698 3
4000. 300.49700±0.49023 0.85542±0.00127 6.812 2
8000. 540.37900±1.11283 0.85976±0.00212 0.329 1
16000. 976.35600±7.32634 0.86609±0.01124 0.000 0
32000. 1779.62000±3.74866

2.(b) (x, y, z)Q (y, −x, z)K (−y, x, z)

100. 14.49390±0.01393 0.78652±0.00038 637.741 6
200. 24.40480±0.06407 0.79844±0.00068 193.153 5
400. 41.18000±0.12866 0.80573±0.00092 55.520 4
800. 71.24760±0.20412 0.80964±0.00125 33.978 3
4000. 258.58000±0.49761 0.82051±0.00229 2.083 2
8000. 455.17500±0.91544 0.82495±0.00396 0.198 1
16000. 807.80900±3.65702 0.82059±0.01058 0.000 0
32000. 1426.69000±8.22899

Cut-and-Permute Algorithm for Self-Avoiding Walks 271

Table III. Continued

N Tpiv, failedN ±dTpiv, failedN ypiv±dypiv q2 DF

3.(a) (x, y, z)Q (x, −y, −z)K (−x, y, −z)

100. 11.52150±0.00774 0.81006±0.00012 18940.759 6
200. 19.36200±0.05615 0.81986±0.00014 2917.879 5
400. 33.04310±0.03296 0.82019±0.00014 2558.777 4
800. 57.17680±0.01268 0.82104±0.00015 2056.303 3
4000. 212.82400±0.03815 0.83872±0.00044 207.907 2
8000. 382.59400±0.16969 0.82756±0.00097 42.738 1
16000. 674.83200±0.71975 0.84356±0.00263 0.000 0
32000. 1210.97000±1.79389

3.(b) (x, y, z)Q (−x, −y, z)

100. 13.49420±0.01353 0.74416±0.00047 4523.560 6
200. 21.84060±0.15401 0.77124±0.00062 111.280 5
400. 35.90370±0.00864 0.77146±0.00062 82.659 4
800. 60.44850±0.12562 0.77967±0.00123 22.250 3
4000. 209.65400±0.73649 0.79887±0.00461 3.622 2
8000. 363.04100±0.81002 0.81292±0.00905 0.368 1
16000. 636.07500±4.66641 0.83143±0.03183 0.000 0
32000. 1131.86000±23.55230

4.(a) (x, y, z)Q (x, z, y)K (x, −z, −y)K (z, y, x)K (−z, y, −x)

100. 13.55210±0.00593 0.83932±0.00032 1054.187 6
200. 23.77720±0.02946 0.85113±0.00051 163.158 5
400. 42.22660±0.05254 0.85557±0.00063 26.317 4
800. 75.99580±0.10340 0.85770±0.00086 12.732 3
4000. 301.14100±0.61872 0.86352±0.00219 4.372 2
8000. 544.65900±1.36295 0.86954±0.00363 0.029 1
16000. 996.21800±6.31179 0.86773±0.01119 0.000 0
32000. 1817.89000±8.13467

4.(b) (x, y, z)Q (y, x, z)K (−y, −x, z)

100. 13.92810±0.01710 0.79980±0.00034 2770.326 6
200. 23.31840±0.07178 0.81499±0.00046 370.328 5
400. 40.02870±0.10436 0.81686±0.00048 194.954 4
800. 69.26540±0.04385 0.81769±0.00050 145.693 3
4000. 256.45000±0.83364 0.83938±0.00209 30.983 2
8000. 451.01700±0.58539 0.84708±0.00251 0.871 1
16000. 809.00600±2.64035 0.85312±0.00694 0.000 0
32000. 1461.39000±5.17075

272 Causo

Table III. Continued

N Tpiv, failedN ±dTpiv, failedN ypiv±dypiv q2 DF

5.(a) (x, y, z)Q (−x, z, y)K (−x, −z, −y)K (z, −y, x)K (−z, −y, −x)

100. 12.19490±0.00138 0.79610±0.00009 13776.870 6
200. 20.54390±0.04020 0.81876±0.00022 977.370 5
400. 35.10850±0.04365 0.82039±0.00023 407.213 4
800. 60.83820±0.02967 0.82179±0.00025 180.301 3
4000. 225.88200±0.43779 0.83565±0.00109 10.462 2
8000. 400.64600±0.27076 0.83814±0.00134 0.074 1
16000. 716.28200±0.46864 0.83497±0.01175 0.000 0
32000. 1277.72000±10.36998

5.(b) (x, y, z)Q (y, x, −z)K (−y, −x, −z)

100. 10.63500±0.00391 0.79204±0.00013 6828.502 6
200. 17.72970±0.02629 0.81120±0.00027 621.314 5
400. 30.14010±0.02065 0.81429±0.00031 179.047 4
800. 52.36940±0.10904 0.82540±0.00101 46.110 3
4000. 195.91700±0.06318 0.83425±0.00165 0.147 2
8000. 349.47400±0.61497 0.83322±0.00358 0.042 1
16000. 621.76000±4.43418 0.83566±0.01243 0.000 0
32000. 1109.64000±5.36154

6.(a) (x, y, z)Q (−x, z, −y)K (−x, −z, y)K (−z, −y, x)K (z, −y, −x)

100. 12.31430±0.01259 0.79843±0.00032 3167.891 6
200. 20.63680±0.05582 0.80658±0.00035 228.953 5
400. 35.42490±0.00217 0.80680±0.00035 180.458 4
800. 61.23020±0.08125 0.81473±0.00075 38.007 3
4000. 225.32100±0.29390 0.82502±0.00184 0.293 2
8000. 399.46000±0.66259 0.82396±0.00337 0.152 1
16000. 705.99200±3.17945 0.82742±0.00948 0.000 0
32000. 1252.79000±5.99259

6.(b) (x, y, z)Q (−y, x, −z)K (y, −x, −z)

100. 10.72070±0.01194 0.79288±0.00041 3124.323 6
200. 17.77960±0.03092 0.81265±0.00057 677.940 5
400. 30.26860±0.12081 0.82221±0.00069 50.629 4
800. 52.47530±0.04430 0.82291±0.00070 25.697 3
4000. 195.23300±0.83783 0.83388±0.00233 1.349 2
8000. 346.10300±0.87541 0.83597±0.00295 0.001 1
16000. 617.91800±4.27681 0.83572±0.01101 0.000 0
32000. 1102.83000±3.55154

Cut-and-Permute Algorithm for Self-Avoiding Walks 273

Table III. Continued

N Tpiv, failedN ±dTpiv, failedN ypiv±dypiv q2 DF

7. (x, y, z)Q (−x, −y, −z)

100. 10.43374±0.00562 0.72192±0.00026 6189.621 6
200. 16.87000±0.15782 0.79349±0.00097 262.240 5
400. 27.59870±0.08282 0.79487±0.00098 164.803 4
800. 46.24860±0.00737 0.79758±0.00100 24.244 3
4000. 163.67700±1.03384 0.81382±0.00354 1.338 2
8000. 285.89400±1.67814 0.81769±0.00538 0.421 1
16000. 501.00000±3.85448 0.82535±0.01297 0.000 0
32000. 887.75500±4.12887

8. (x, y, z)Q (y, z, −x)K (y, −z, x)K (−y, z, x)K (−y, −z, −x)
(x, y, z)Q (z, x, −y)K (z, −x, y)K (−z, x, y)K (−z, −x, −y)

100. 12.46370±0.00513 0.80822±0.00021 7715.820 6
200. 21.30210±0.00692 0.81994±0.00026 2238.419 5
400. 37.03280±0.00907 0.82865±0.00033 242.017 4
800. 65.16220±0.05450 0.83399±0.00052 66.482 3
4000. 247.15100±0.43455 0.84409±0.00140 5.681 2
8000. 441.53500±0.69148 0.84757±0.00205 0.269 1
16000. 792.69500±3.48873 0.85116±0.00723 0.000 0
32000. 1429.98000±3.41729

9. (x, y, z)Q (y, z, x)K (y, −z, −x)K (−y, −z, x)K (−y, z, −x)
(x, y, z)Q (z, x, y)K (z, −x, −y)K (−z, −x, y)K (−z, x, −y)

100. 12.44090±0.00677 0.82676±0.00012 18185.883 6
200. 21.30550±0.01874 0.83542±0.00014 2970.316 5
400. 37.06200±0.06948 0.83729±0.00014 715.471 4
800. 65.09910±0.01040 0.83740±0.00014 629.169 3
4000. 246.75200±0.26749 0.84924±0.00050 24.712 2
8000. 442.15800±0.32010 0.85121±0.00067 4.541 1
16000. 793.87800±1.71463 0.85794±0.00323 0.000 0
32000. 1438.86000±0.83247

We also computed Tpiv, failedN for the moves that change the z-coordinate
when we insert the points as proposed in ref. 8, i.e., without modifying the
order in which we insert monomers into the hash table because of the
presence of the surface. We found that, by using this method, the average
number of points inserted in the hash table before detecting a failure
is approximately 1.4 times larger. The difference is more significant for
pivot points wk with k < N/2—for k/NQ 0 the difference is a factor of

274 Causo

two—while for k ¬ 0.6 the two methods are equivalent. However, this has
no influence on the exponent ypiv, which is approximately the same in both
cases.
At this point we can estimate the average CPU time spent in a pivot

move. Clearly

Tpiv=(1−f
piv
N) T

piv, failed
N +fpivN T

piv, succ
N

’ 1 ·Nypiv+N−ppivN ’N1−ppiv (27)

where we have taken into account that ypiv « 1−ppiv. Notice also that more
time is spent in a successful move than in an unsuccesful one.
Let us now consider the cut-and-permute move. As in the previous

case we tried to build the new walk in the most efficient way in order to
reduce the CPU time necessary to detect a failure. Unlike the pivot case,
for the cut-and-permute move the heuristic argument indicates that the
dominant cause of failure is given by intersections with the surface. As it is
illustrated in Fig. 3, the cut-point wc divides the walk in two subwalks,
w[0, c], which is grafted at the surface, and w[c, N]. The move transforms
w[c, N] via a lattice symmetry g which preserves z and translates the
transformed subwalk grafting its first vertex at the surface. The subwalk
w[0, c] is instead translated in order to join the free end of the grafted
subwalk. The only possibility of hitting the surface comes from the new
grafted subwalk wŒ[0, N−c] and the monomers which are more likely to
intersect the forbidden region are the ones following the new grafted vertex.
Collision between monomers are instead more likely to occur at the joining
of the two subwalks.
As for the pivot move, in order to check at the same time the two

regions where failures are more likely to occur, we inserted the monomers
of the proposed new walk wŒ in the hash table in the following order: w −N−c,
w −0, w

−

N−c−1, w
−

N−c+1, w
−

1,..., w
−

i−1, w
−

N−c−i, w
−

N−c+i,... .
In this way the CPU time needed to check a proposed walk is

I(wŒ)=min {i: wŒ[N−c−i, N−c−1] 5 wŒ[N−c+1, N−c+i]]”

or wŒ[0, i] 5 S̊]” or wŒ[N−c−i, N−c+i] 5 S̊]”}
(28)

if wŒ is rejected and I(wŒ)=N if it is accepted. The average time spent in
detecting a failed move is expected to scale as

Tcp, failedN =OI(wŒ)P|failed ’Nycp (29)

Cut-and-Permute Algorithm for Self-Avoiding Walks 275

We can estimate ycp heuristically as before. With the above procedure the
probability of using CPU time which is longer than i goes as

Prob{I(wŒ) > i}=Prob{wŒ[N−k−i, N−k+i] is SAW

and wŒ[0, i] does not intersect the surface} ’ i−pcp

(30)

and the average total time spent in a failure scales as

Tcp, failedN =C
N

i=0
Prob{I > i} ’N1−pcp (31)

so that ycp=1−pcp. The data for T
cp, failed
N in the cut-and-permute move and

the estimates of the ycp exponent obtained from data with N [Nmin, with
Nmin appearing in the first column, are reported in Table IV. From those
data we have computed our final estimates as we did in the pivot case
obtaining:

1. diagonal reflections ycp=0.4870(19);

2. identity ycp=0.4788(70);

3. ±p/2 rotations ycp=0.4921(13);

4. p rotation ycp=0.4933(43)a;

5. 1 axis reflection ycp=0.4869(13)a.

The group average ycp=0.4890(15) is slightly lower than 1−pcp %
0.5078(20) as it is also happened for the pivot move.
In order to confirm the role played by intersections with the surface,

we also measured I(wŒ) when monomers are inserted in the hash table in
the order w −N−c, w

−

N−c+1, w
−

N−c−1,..., without inserting at the same time the
monomers near the grafted end. In this case we find ycp % 0.9 which is very
similar to the exponent for the pivot move. The proposed procedure is thus
very inefficient.
Finally, we can estimate the average CPU time spent in a cut-and-

permute move. Clearly

TN, cp=(1−f
cp
N) ·T

cp, failed
N +fcpN ·T

cp, succ
N

’ 1 ·Nycp+N−pcp ·N ’N1−pcp (32)

276 Causo

Table IV. Average Time Spent in Checking a Failed Cut-and-Permute Move for

Different Equivalence Classes of Moves. The Check of the Proposed

Configurations is Performed as Described in Section 4

N Tcp, failedN ±dTcp, failedN ycp±dycp q2 DF

1. (x, y)Q (x, y)

100. 10.14144±0.00155 0.47279±0.00021 263.734 6
200. 13.95020±0.01307 0.47934±0.00047 25.481 5
400. 19.40340±0.02031 0.48074±0.00064 15.016 4
800. 27.03140±0.01527 0.48143±0.00076 12.282 3
4000. 58.50040±0.08171 0.49023±0.00328 4.686 2
8000. 82.54510±0.27698 0.47880±0.00702 1.297 1
16000. 116.13100±1.05078 0.45799±0.01957 0.000 0
32000. 159.52100±1.61276

2. (x, y)Q (y, x)K (−y, −x)

100. 10.14131±0.00197 0.47173±0.00015 1916.220 6
200. 13.95890±0.00120 0.47619±0.00018 221.267 5
400. 19.36230±0.04511 0.48387±0.00056 7.323 4
800. 26.95380±0.00764 0.48408±0.00057 3.333 3
4000. 58.61610±0.12235 0.48698±0.00192 0.857 2
8000. 82.05480±0.24318 0.48904±0.00384 0.470 1
16000. 114.94400±0.28547 0.49373±0.00783 0.000 0
32000. 161.85000±0.78166

3. (x, y)Q (−y, x)K (y, −x)

100. 10.13721±0.00407 0.47885±0.00011 584.104 6
200. 13.97810±0.00776 0.48137±0.00016 149.121 5
400. 19.40490±0.02226 0.48388±0.00031 57.209 4
800. 26.98040±0.02724 0.48550±0.00044 30.702 3
4000. 58.54480±0.06015 0.49209±0.00129 1.102 2
8000. 82.38670±0.02772 0.49019±0.00250 0.322 1
16000. 115.68200±0.20951 0.49841±0.01471 0.000 0
32000. 163.41900±1.63933

4. (x, y)Q (−x, −y)

100. 10.14555±0.00415 0.48117±0.00006 2964.627 6
200. 13.94730±0.02649 0.48198±0.00006 36.688 5
400. 19.34220±0.00095 0.48199±0.00006 22.650 4
800. 27.00100±0.00421 0.48226±0.00010 12.053 3
4000. 58.61070±0.12987 0.48721±0.00257 8.353 2
8000. 81.96580±0.01518 0.49328±0.00432 5.292 1
16000. 113.95800±0.70179 0.52218±0.01329 0.000 0
32000. 163.65800±1.12058

Cut-and-Permute Algorithm for Self-Avoiding Walks 277

Table IV. Continued

N Tcp, failedN ±dTcp, failedN ycp±dycp q2 DF

5. (x, y)Q (−x, y)K (x, −y)

100. 10.14238±0.00359 0.47655±0.00021 344.868 6
200. 13.93060±0.02251 0.48196±0.00037 24.212 5
400. 19.39390±0.01713 0.48242±0.00041 17.624 4
800. 26.97070±0.04447 0.48468±0.00073 3.912 3
4000. 58.65150±0.07087 0.48689±0.00134 0.034 2
8000. 82.21440±0.12537 0.48668±0.00231 0.022 1
16000. 115.14900±0.34679 0.48752±0.00610 0.000 0
32000. 161.44300±0.47969

where we have taken into account ycp « 1−pcp. Note also that TN, cp/
TN, piv ’Npcp−ppiv ’N−0.4, so that the average CPU time for successful move
scales identically.

5. THE HYBRID CUT-AND-PERMUTE ALGORITHM:

AUTOCORRELATION TIMES

In this section we want finally to define our hybrid algorithm that
consists in performing both pivot and cut-and-permute moves. More pre-
cisely, the algorithm is specified by a number 0 < q < 1. The hybrid
algorithm works by performing a pivot move with probability q and a cut-
and-permute move with probability (1−q). Since the pivot alone is
ergodic, the full algorithm is ergodic.
In order to understand the dynamic behavior we will distinguish three

different classes of observables: (a) global observables that depend on the
global shape of the SAW, for instance, the end-to-end distance or the
radius of gyration; (b) global surface observables that depend on the
interaction of the SAW with the surface, for example, the number of
monomers lying on S; (c) local observables that depend on local properties
of the SAW.
Let us analyse at first the behaviour of global observables. Both pivot

and cut-and-permute are nonlocal moves and can decorrelate global
observables in few accepted moves, but the cut-and-permute move cannot
modify a class of observables, for instance the z-coordinate of the free
endpoint. We denote with Oz the class of observables which are updated
only in the pivot dynamics and with Ox, y all the others. For a polymer of
length N the autocorrelation time yint, Oz is therefore of order 1/(q ·fN, piv),

278 Causo

while yint, Ox, y is of order 1/fN, max, where fN, max=max {q ·fN, piv, (1−q) ·
fN, cp}. Since in the limit NQ. the acceptance fraction of the cut-and-
permute move decreases faster than the acceptance fraction of the pivot
move, if q is constant, the scaling behaviour of the autocorrelation time
yint, glob of any global observable is determined by the pivot dynamics
only, i.e.,

yint, glob ’ yint, Oz ’ yint, Ox, y ’ q
−1 ·Nppiv (33)

so that zglob % ppiv % 0.10. Table V reports the autocorrelation times for
different values of N for the z component of the free endpoint obtained
setting q=1/2. The dynamic exponent z, which is obtained by fitting
the data to a power law, is z % 0.15, in reasonable agreement with the
prediction.
Global surface observables will be changed in a few successful cut-and-

permute moves and thus we expect

yint, surf ’ (1−q) Npcp (34)

so that zsurf % pcp % 0.49. Unfortunately, we have not measured surface
quantities in our simulation and therefore we are not able to test this pre-
diction. Nonetheless, we believe that the correct value of z is not too far
from pcp.
Finally, let us consider a local observable, for instance the average

number of monomers at which the SAW makes a 90° turn. Such a quantity
is of order N with a variance of order `N. By using a standard random-
walk argument we obtain

yint, loc ’min {q−1N1+ppiv, (1−q)−1N1+pcp} ’N1+ppiv ’N1.09 (35)

since pcp < ppiv. Since local moves should be the slowest ones we expect
yexp ¬N1.1.

Table V. Autocorrelation Times and Dynamic Exponent zglob for the Observable z end

N yzendN ±dyzendN z±dz q2 DF

4000 10.347±0.040 0.1506±0.0029 1.564 2
8000 11.420±0.037 0.1543±0.0041 0.007 1
16000 12.703±0.087 0.155±0.012 0.000 0
32000 14.146±0.068

Cut-and-Permute Algorithm for Self-Avoiding Walks 279

Finally, we estimate the behaviour of the autocorrelation time for
global observables in CPU units. Since the average CPU time spent in
performing one move of the cut-and-permute algorithm is proportional to

T=q·Tpiv+(1−q) ·Tcp ’ q ·N1−ppiv+(1−q) ·N1−pcp ’ q ·N1−ppiv (36)

the autocorrelation time of global observables in CPU units scales as

yCPUint, glob ’N
zglob+1−ppiv ’N1.06, (37)

yCPUint, surf ’N
zsurf+1−ppiv ’N1.40 (38)

where, in the absence of a numerical estimate, we have used our heuristic
estimate, zsurf % pcp. The behavior of global observables is nearly optimal,
while for surface observables the behavior is not as good. If one is inter-
ested in computing surface observables, it is possible to improve the algo-
rithm by increasing the frequency of the cut-and-permute moves. Indeed, if
we scale q−1 ’Npcp−ppiv—essentially we keep the relative frequency of suc-
cessful pivot and cut-and-permute moves constant—then our previous
arguments give

yint, glob ’Npcp, yint, surf ’Npcp (39)

The time per move scales now as N1−pcp, so that

yCPUint, glob ’ y
CPU
int, surf ’N (40)

In this case, the dynamics is optimal for both types of observables.
Note that one cannot obtain the same result using the pure pivot

algorithm. Indeed, the autocorrelation time for global surface observables
would be proportional to the number of attempts occurring between two
accepted pivot moves changing the z-coordinate of the walk and applied in
a pivot point wk with k small. Because of the monomer depletion near the
surface, indeed, one does not expect that a move at a pivot point far from
the grafted end would affect macroscopically the number of monomers
near the surface. In Section 2 we have shown that among the z-changing
moves only the ones which do not invert z have a small probability of
being accepted for small k. This probability decays as N−x with x %
pcp % 0.49. Therefore, if we choose the pivot point with uniform probabil-
ity, we get

ypivotint, surf ’N
zpivotsurf ’N1+pcp (41)

280 Causo

and the autocorrelation time in CPU units scales as

yCPU, pivotint, surf ’Nz
pivot
surf +1−ppiv ’N2.4 (42)

This indicates clearely that the pivot algorithm alone is inefficient for
simulating polymers grafted at an inpenetrable interface.

ACKNOWLEDGMENTS

The author is glad to acknowledge stimulating discussions with Sergio
Caracciolo, Peter Grassberger, Andrea Pelissetto, and Stu Whittington.

REFERENCES

1. D. H. Napper, Polymeric Stabilization of Colloidal Dispersions (Academic, New York,
1983).

2. R. Lipowsky, Europhys. Lett. 30:197 (1995).
3. R. Hiergeist and R. Lipowsky, J. Phys. II (France) 6:1465 (1996).
4. R. Lipowsky, H.-G. Döbereiner, C. Hiergeist, and V. Indrani, Phys. A 248:536 (1998).
5. V. Frette, I. Tsafir, M.-A. Guedeau-Boudeville, L. Jullien, D. Kandel, and J. Stavans,
Phys. Rev. Lett. 83:2465 (1999).

6. E. Eisenriegler, Polymers near surfaces (World Scientific, Singapore, 1993).
7. H. W. Diehl, Field-theory of surface critical behaviour, in Phase transitions and and Criti-
cal Phenomena, C. Domb and J.L. Lebowitz, eds, Vol. 10, p. 75.

8. N. Madras and A. D. Sokal, J. Stat. Phys. 50:109 (1988).
9. B. Li, N. Madras, and A. D. Sokal, J. Stat. Phys. 80:661 (1995).
10. N. Madras and G. Slade, The Self-Avoiding Walk (Birkhäuser, Boston-Basel-Berlin, 1993)
11. A. D. Sokal, Monte Carlo Methods for the Self-Avoiding Walk, in Monte Carlo and
Molecular Dynamics Simulations in Polymer Science, K. Binder, ed. (Oxford University
Press, 1994).

12. S. Caracciolo, M. S. Causo, G. Ferraro, M. Papinutto, and A. Pelissetto, J. Stat. Phys.
100:1111 (2000).

13. S. Caracciolo, A. Pelissetto, and A. D. Sokal, J. Stat. Phys. 60:1 (1990).
14. S. Caracciolo, A. Pelissetto, and A. D. Sokal, J. Stat. Phys. 67:65 (1992).
15. S. Caracciolo, M. S. Causo, and A. Pelissetto, Phys. Rev. E 59:R16 (1998).
16. R. Hegger and P. Grassberger, J. Phys. A 27:4069 (1994).
17. H. W. Diehl and M. Shpot, Nucl. Phys. B 528:595 (1998).
18. H. W. Diehl and M. Shpot, Phys. Rev. Lett. 73:3431 (1994).
19. T. Kennedy, J. Stat. Phys. 106:407 (2002).

Cut-and-Permute Algorithm for Self-Avoiding Walks 281

	1. INTRODUCTION
	2. THE PIVOT MOVE IN THE PRESENCE OF A SURFACE
	3. THE CUT-AND-PERMUTE MOVE
	4. COMPUTATIONAL COMPLEXITY
	5. THE HYBRID CUT-AND-PERMUTE ALGORITHM AUTOCORRELATION TIMES
	ACKNOWLEDGMENTS

